On the heavy-tailedness of Student’s t-statistic
Jonsson, Fredrik
Bernoulli, Tome 17 (2011) no. 1, p. 276-289 / Harvested from Project Euclid
Let {Xi}i≥1 be an i.i.d. sequence of random variables and define, for n≥2, ¶ $\hbox{\global\catcode`\@=4}T_{n}=\cases{n^{-1/2}\hat{\sigma}_{n}^{-1}S_{n},@\quad$\hat{\sigma}_{n}>0$,\cr 0,@\quad$\hat{\sigma}_{n}=0$,}$ $\qquad\mbox{with\ }S_{n}=\sum_{i=1}^{n}X_{i},$ $\hat{\sigma}^{2}_{n}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-n^{-1}S_{n})^{2}.$ ¶ We investigate the connection between the distribution of an observation Xi and finiteness of E|Tn|r for (n, r)∈ℕ≥2×ℝ+. Moreover, assuming $T_{n}\stackrel {d}{\longrightarrow }T$ , we prove that for any r>0, lim n→∞E|Tn|r=E|T|r<∞, provided there is an integer n0 such that E|Tn0|r is finite.
Publié le : 2011-02-15
Classification:  finiteness of moments,  robustness,  Student’s t-statistic,  t-distributions,  t-test
@article{1297173843,
     author = {Jonsson, Fredrik},
     title = {On the heavy-tailedness of Student's t-statistic},
     journal = {Bernoulli},
     volume = {17},
     number = {1},
     year = {2011},
     pages = { 276-289},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1297173843}
}
Jonsson, Fredrik. On the heavy-tailedness of Student’s t-statistic. Bernoulli, Tome 17 (2011) no. 1, pp.  276-289. http://gdmltest.u-ga.fr/item/1297173843/