Let {Xi}i≥1 be an i.i.d. sequence of random variables and define, for n≥2,
¶
$\hbox{\global\catcode`\@=4}T_{n}=\cases{n^{-1/2}\hat{\sigma}_{n}^{-1}S_{n},@\quad$\hat{\sigma}_{n}>0$,\cr 0,@\quad$\hat{\sigma}_{n}=0$,}$ $\qquad\mbox{with\ }S_{n}=\sum_{i=1}^{n}X_{i},$ $\hat{\sigma}^{2}_{n}=\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-n^{-1}S_{n})^{2}.$
¶
We investigate the connection between the distribution of an observation Xi and finiteness of E|Tn|r for (n, r)∈ℕ≥2×ℝ+. Moreover, assuming $T_{n}\stackrel {d}{\longrightarrow }T$ , we prove that for any r>0, lim n→∞E|Tn|r=E|T|r<∞, provided there is an integer n0 such that E|Tn0|r is finite.