The Jet of an Interpolant on a Finite Set
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 355-360 / Harvested from Project Euclid
We study functions $F \in C^m (\mathbb{R}^n)$ having norm less than a given constant $M$, and agreeing with a given function $f$ on a finite set $E$. Let $\Gamma_f (S,M)$ denote the convex set formed by taking the $(m-1)$-jets of all such $F$ at a given finite set $S \subset \mathbb{R}^n$. We provide an efficient algorithm to compute a convex polyhedron $\tilde{\Gamma}_f (S,M)$, such that $$ \Gamma_f (S,cM) \subset \tilde{\Gamma}_f (S,M) \subset \Gamma_f (S,CM), $ where $c$ and $C$ depend only on $m$ and $n$.
Publié le : 2011-01-15
Classification:  interpolation,  jet,  algorithm,  Whitney extension theorem,  49K24,  52A35
@article{1296828838,
     author = {Fefferman
, 
Charles and Israel
, 
Arie},
     title = {The Jet of an Interpolant on a Finite Set},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 355-360},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828838}
}
Fefferman
, 
Charles; Israel
, 
Arie. The Jet of an Interpolant on a Finite Set. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  355-360. http://gdmltest.u-ga.fr/item/1296828838/