Strong $A_\infty$-weights are $A_\infty$-weights on metric spaces
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 335-354 / Harvested from Project Euclid
We prove that every strong $A_\infty$-weight is a Muckenhoupt weight in Ahlfors-regular metric measure spaces that support a Poincaré inequality. We also explore the relations between various definitions for $A_\infty$-weights in this setting, since some of these characterizations are needed in the proof of the main result.
Publié le : 2011-01-15
Classification:  metric doubling measure,  metric spaces,  Muckenhoupt weights,  strong $A_\infty$-weight,  42B35
@article{1296828837,
     author = {Korte
, 
Riikka and Kansanen
, 
Outi Elina},
     title = {Strong $A\_\infty$-weights are $A\_\infty$-weights on metric spaces},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 335-354},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828837}
}
Korte
, 
Riikka; Kansanen
, 
Outi Elina. Strong $A_\infty$-weights are $A_\infty$-weights on metric spaces. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  335-354. http://gdmltest.u-ga.fr/item/1296828837/