Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 253-271 / Harvested from Project Euclid
In this paper we consider the system in $\mathbb{R}^3$ \begin{equation} \left\{ \begin{array}{l} -\varepsilon^2 \Delta u + V(x)u + \phi(x)u = u^p, \\ -\Delta \phi = u^2, \end{array} \right. \end{equation} for $p\in (1,5)$. We prove the existence of multi-bump solutions whose bumps concentrate around a local minimum of the potential $V(x)$. We point out that such solutions do not exist in the framework of the usual Nonlinear Schrödinger Equation.
Publié le : 2011-01-15
Classification:  nonlinear analysis,  Schrödinger-Poisson-Slater problem,  variational methods,  singular perturbation method,  multi-bump solutions,  35B40,  35J20,  35J55
@article{1296828834,
     author = {Ruiz
, 
David and Vaira
, 
Giusi},
     title = {Cluster solutions for the Schr\"odinger-Poisson-Slater problem around a local
minimum of the potential},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 253-271},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828834}
}
Ruiz
, 
David; Vaira
, 
Giusi. Cluster solutions for the Schrödinger-Poisson-Slater problem around a local
minimum of the potential. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  253-271. http://gdmltest.u-ga.fr/item/1296828834/