Regularity for solutions of the total variation denoising problem
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 233-252 / Harvested from Project Euclid
The main purpose of this paper is to prove a local Hölder regularity result for the solutions of the total variation based denoising problem assuming that the datum is locally Hölder continuous. We also prove a global estimate on the modulus of continuity of the solution in convex domains of $\mathbb{R}^N$ and some extensions of this result for the total variation minimization flow.
Publié le : 2011-01-15
Classification:  image processing,  variational methods,  regularity of solutions,  94A08,  35J20,  35J70,  49N60
@article{1296828833,
     author = {Caselles
, 
Vicent and Chambolle
, 
Antonin and Novaga
, 
Matteo},
     title = {Regularity for solutions of the total variation denoising problem},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 233-252},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828833}
}
Caselles
, 
Vicent; Chambolle
, 
Antonin; Novaga
, 
Matteo. Regularity for solutions of the total variation denoising problem. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  233-252. http://gdmltest.u-ga.fr/item/1296828833/