Isoperimetry for spherically symmetric log-concave probability measures
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 93-122 / Harvested from Project Euclid
We prove an isoperimetric inequality for probability measures $\mu$ on $\mathbb{R}^n$ with density proportional to $\exp(-\phi(\lambda |x|))$, where $|x|$ is the euclidean norm on $\mathbb{R}^n$ and $\phi$ is a non-decreasing convex function. It applies in particular when $\phi(x)=x^\alpha$ with $\alpha \ge 1$. Under mild assumptions on $\phi$, the inequality is dimension-free if $\lambda$ is chosen such that the covariance of $\mu$ is the identity.
Publié le : 2011-01-15
Classification:  isoperimetric inequalities,  log-concave measures,  26D10,  60E15,  28A75
@article{1296828830,
     author = {Huet
, 
Nolwen},
     title = {Isoperimetry for spherically symmetric log-concave probability measures},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 93-122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828830}
}
Huet
, 
Nolwen. Isoperimetry for spherically symmetric log-concave probability measures. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  93-122. http://gdmltest.u-ga.fr/item/1296828830/