Le théorème du symbole total d'un opérateur différentiel $p$-adique d'échelon $h\geq0$
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 39-92 / Harvested from Project Euclid
In this article we prove the total symbol theorem for the $p$-adic differential operators of degree $h\geq 0$ for the echelon filtration and the noetherianity of the ring of the $p$-adic differential operators of degree $h\geq 0$ for the echelon filtration over a $\dagger$-adic affine smooth scheme small enough.
Publié le : 2011-01-15
Classification:  $p$-adic differential operator,  $p$-adic differential operator of $h\ge 0$ echelon,  total symbol,  division,  continuity,  noetherianity,  $p$-adic de Rham cohomology,  14F30,  14F10
@article{1296828829,
     author = {Mebkhout
, 
Zoghman},
     title = {Le th\'eor\`eme du symbole total d'un op\'erateur diff\'erentiel
$p$-adique d'\'echelon $h\geq0$},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 39-92},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828829}
}
Mebkhout
, 
Zoghman. Le théorème du symbole total d'un opérateur différentiel
$p$-adique d'échelon $h\geq0$. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  39-92. http://gdmltest.u-ga.fr/item/1296828829/