Global existence for the primitive equations with small anisotropic viscosity
Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, p. 1-38 / Harvested from Project Euclid
In this paper, we consider the primitive equations with zero vertical viscosity, zero vertical thermal diffusivity, and the horizontal viscosity and horizontal thermal diffusivity of size $\varepsilon^\alpha$ where $0 < \alpha < \alpha_0$. We prove the global existence of a unique strong solution for large data provided that the Rossby number is small enough (the rotation and the vertical stratification are large).
Publié le : 2011-01-15
Classification:  primitive equations,  quasi-geostrophic system,  anisotropy,  dispersion,  Strichartz estimates,  35Q35,  35S30,  76D05,  76U05
@article{1296828828,
     author = {Charve
, 
Fr\'ed\'eric and Ngo
, 
Van-Sang},
     title = {Global existence for the primitive equations with small anisotropic viscosity},
     journal = {Rev. Mat. Iberoamericana},
     volume = {27},
     number = {1},
     year = {2011},
     pages = { 1-38},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296828828}
}
Charve
, 
Frédéric; Ngo
, 
Van-Sang. Global existence for the primitive equations with small anisotropic viscosity. Rev. Mat. Iberoamericana, Tome 27 (2011) no. 1, pp.  1-38. http://gdmltest.u-ga.fr/item/1296828828/