On the embedding dimension of 2-torsion lens spaces
González, Jesús ; Landweber, Peter ; Shimkus, Thomas
Homology Homotopy Appl., Tome 11 (2009) no. 1, p. 133-160 / Harvested from Project Euclid
Using the ku- and BP-theoretic versions of Astey's cobordism obstruction for the existence of smooth Euclidean embeddings of stably almost complex manifolds, we prove that, for e greater than or equal to α(n), the (2n+1)-dimensional 2e-torsion lens space cannot be embedded in Euclidean space of dimension 4n-2α(n)+1. (Here α(n) denotes the number of ones in the dyadic expansion of a positive integer n.) A slightly restricted version of this fact holds for e < α(n). We also give an inductive construction of Euclidean embeddings for 2e-torsion lens spaces. Some of our best embeddings are within one dimension of being optimal.
Publié le : 2009-05-15
Classification:  Euclidean embeddings of lens spaces,  connective complex K-theory,  Brown-Peterson theory,  Euler class,  modified Postnikov towers,  57R40,  19L41,  55S45
@article{1296138515,
     author = {Gonz\'alez, Jes\'us and Landweber, Peter and Shimkus, Thomas},
     title = {On the embedding dimension of 2-torsion lens spaces},
     journal = {Homology Homotopy Appl.},
     volume = {11},
     number = {1},
     year = {2009},
     pages = { 133-160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1296138515}
}
González, Jesús; Landweber, Peter; Shimkus, Thomas. On the embedding dimension of 2-torsion lens spaces. Homology Homotopy Appl., Tome 11 (2009) no. 1, pp.  133-160. http://gdmltest.u-ga.fr/item/1296138515/