On a smooth manifold $M$ we introduce the concept of Codazzi-equivalent Riemannian
metrics. The curvature tensors of two Codazzi-equivalent metrics satisfy a simple relation. The
results together with known facts about Codazzi tensors give a method of proof for old and new local
and global uniqueness results for Riemannian manifolds and Euclidean hypersurfaces.
Publié le : 2010-09-15
Classification:
Codazzi-equivalent Riemannian metrics,
Codazzi tensors,
hypersurfaces with parallel normals,
53C21,
53B20,
53B21,
53C20
@article{1295040751,
author = {Simon, Udo and Schwenk-Schellschmidt, Angela and Vrancken, Luc},
title = {Codazzi-equivalent Riemannian Metrics},
journal = {Asian J. Math.},
volume = {14},
number = {1},
year = {2010},
pages = { 291-302},
language = {en},
url = {http://dml.mathdoc.fr/item/1295040751}
}
Simon, Udo; Schwenk-Schellschmidt, Angela; Vrancken, Luc. Codazzi-equivalent Riemannian Metrics. Asian J. Math., Tome 14 (2010) no. 1, pp. 291-302. http://gdmltest.u-ga.fr/item/1295040751/