The Cut Loci on Ellipsoids and Certain Liouville Manifolds
Itoh, Jin-ichi ; Kiyohara, Kazuyoshi
Asian J. Math., Tome 14 (2010) no. 1, p. 257-290 / Harvested from Project Euclid
We show that some riemannian manifolds diffeomorphic to the sphere have the property that the cut loci of general points are smoothly embedded closed disks of codimension one. Ellipsoids with distinct axes are typical examples of such manifolds.
Publié le : 2010-06-15
Classification:  Cut locus,  ellipsoid,  Liouville manifold,  integrable geodesic flow,  53C22,  53A05
@article{1294789789,
     author = {Itoh, Jin-ichi and Kiyohara, Kazuyoshi},
     title = {The Cut Loci on Ellipsoids and Certain Liouville Manifolds},
     journal = {Asian J. Math.},
     volume = {14},
     number = {1},
     year = {2010},
     pages = { 257-290},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1294789789}
}
Itoh, Jin-ichi; Kiyohara, Kazuyoshi. The Cut Loci on Ellipsoids and Certain Liouville Manifolds. Asian J. Math., Tome 14 (2010) no. 1, pp.  257-290. http://gdmltest.u-ga.fr/item/1294789789/