Windings of planar random walks and averaged Dehn function
Schapira, Bruno ; Young, Robert
Ann. Inst. H. Poincaré Probab. Statist., Tome 47 (2011) no. 1, p. 130-147 / Harvested from Project Euclid
We prove sharp estimates on the expected number of windings of a simple random walk on the square or triangular lattice. This gives new lower bounds on the averaged Dehn function, which measures the expected area needed to fill a random curve with a disc.
Publié le : 2011-02-15
Classification:  Simple random walk,  Winding number,  Averaged Dehn function,  52C45,  60D05
@article{1294170233,
     author = {Schapira, Bruno and Young, Robert},
     title = {Windings of planar random walks and averaged Dehn function},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {47},
     number = {1},
     year = {2011},
     pages = { 130-147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1294170233}
}
Schapira, Bruno; Young, Robert. Windings of planar random walks and averaged Dehn function. Ann. Inst. H. Poincaré Probab. Statist., Tome 47 (2011) no. 1, pp.  130-147. http://gdmltest.u-ga.fr/item/1294170233/