On Integrals of Vector-valued Functions on Time Scales
Cichoń, M
Commun. Math. Anal., Tome 11 (2011) no. 1, p. 94-110 / Harvested from Project Euclid
The main goal of the paper is to define new type of integrals for vector-valued functions on time scales. This allows to make possible the advantages of dynamic equations also for vector-valued functions i.e. for dynamic modeling in Banach spaces. To do it we define some appropriate integrals for vector-valued functions on time scales and we prove their properties. We emphasize on the particular ones, which are useful for solving dynamic equations in Banach spaces.
Publié le : 2011-01-15
Classification:  time scale,  Pettis integral,  Henstock-Kurzweil integral,  dynamic Cauchy problem,  Riemann integral,  39A10,  28B05,  26A39,  26A42,  28A25,  39A12
@article{1293054276,
     author = {Cicho\'n, M},
     title = {On Integrals of Vector-valued Functions on Time Scales},
     journal = {Commun. Math. Anal.},
     volume = {11},
     number = {1},
     year = {2011},
     pages = { 94-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1293054276}
}
Cichoń, M. On Integrals of Vector-valued Functions on Time Scales. Commun. Math. Anal., Tome 11 (2011) no. 1, pp.  94-110. http://gdmltest.u-ga.fr/item/1293054276/