Maximal analytic extensions of the Emparan-Reall black ring
Chruściel, Piotr T. ; Cortier, Julien
J. Differential Geom., Tome 84 (2010) no. 1, p. 425-460 / Harvested from Project Euclid
We construct a Kruskal-Szekeres-type analytic extension of the Emparan-Reall black ring, and investigate its geometry. We prove that the extension is maximal, globally hyperbolic, and unique within a natural class of extensions. The key to those results is the proof that causal geodesics are either complete, or approach a singular boundary in finite affine time. Alternative maximal analytic extensions are also constructed.
Publié le : 2010-07-15
Classification: 
@article{1292940690,
     author = {Chru\'sciel, Piotr T. and Cortier, Julien},
     title = {Maximal analytic extensions of the Emparan-Reall black ring},
     journal = {J. Differential Geom.},
     volume = {84},
     number = {1},
     year = {2010},
     pages = { 425-460},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1292940690}
}
Chruściel, Piotr T.; Cortier, Julien. Maximal analytic extensions of the Emparan-Reall black ring. J. Differential Geom., Tome 84 (2010) no. 1, pp.  425-460. http://gdmltest.u-ga.fr/item/1292940690/