Nonalgebraic hyperkähler manifolds
Campana, Frédéric ; Oguiso, Keiji ; Peternell, Thomas
J. Differential Geom., Tome 84 (2010) no. 1, p. 397-424 / Harvested from Project Euclid
We study the algebraic dimension $a(X)$ of a compact hyperkähler manifold of dimension $2n$. We show that $a(X)$ is at most $n$ unless $X$ is projective. If a compact Kähler manifold with algebraic dimension 0 and Kodaira dimension 0 has a minimal model, then only the values 0, $n$ and $2n$ are possible. In case of middle dimension, the algebraic reduction is holomorphic Lagrangian. If $n = 2$, then - without any assumptions - the algebraic dimension only takes the values 0, 2 and 4. The paper also gives structure results for ”generalised hyperkähler” manifolds and studies nef lines bundles.
Publié le : 2010-07-15
Classification: 
@article{1292940689,
     author = {Campana, Fr\'ed\'eric and Oguiso, Keiji and Peternell, Thomas},
     title = {Nonalgebraic hyperk\"ahler manifolds},
     journal = {J. Differential Geom.},
     volume = {84},
     number = {1},
     year = {2010},
     pages = { 397-424},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1292940689}
}
Campana, Frédéric; Oguiso, Keiji; Peternell, Thomas. Nonalgebraic hyperkähler manifolds. J. Differential Geom., Tome 84 (2010) no. 1, pp.  397-424. http://gdmltest.u-ga.fr/item/1292940689/