Molecular decomposition of the modulation spaces
Kobayashi, Masaharu ; Sawano, Yoshihiro
Osaka J. Math., Tome 47 (2010) no. 1, p. 1029-1053 / Harvested from Project Euclid
The aim of this paper is to develop a theory of decomposition in the weighted modulation spaces $M_{p,q}^{s,W}$ with $0 < p,q \le \infty$, $s \in \mathbb{R}$ and $W \in A_{\infty}$, where $W$ belongs to the class of $A_{\infty}$ defined by Muckenhoupt. For this purpose we shall define molecules for the modulation spaces. As an application we give a simple proof of the boundedness of the pseudo-differential operators with symbols in $M_{\infty,\min(1,p,q)}^{0}$. We shall deal with dual spaces as well.
Publié le : 2010-12-15
Classification:  42B35,  41A17
@article{1292854316,
     author = {Kobayashi, Masaharu and Sawano, Yoshihiro},
     title = {Molecular decomposition of the modulation spaces},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 1029-1053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1292854316}
}
Kobayashi, Masaharu; Sawano, Yoshihiro. Molecular decomposition of the modulation spaces. Osaka J. Math., Tome 47 (2010) no. 1, pp.  1029-1053. http://gdmltest.u-ga.fr/item/1292854316/