The Levi problem in the blow-up
Colţoiu, Mihnea ; Joiţa, Cezar
Osaka J. Math., Tome 47 (2010) no. 1, p. 943-947 / Harvested from Project Euclid
We prove that a locally Stein open subset of the blow-up of $\mathbb{C}^{n}$ at a point is Stein if and only if it does not contain a subset of the form $U \setminus A$ where $A$ is the exceptional divisor and $U$ is an open neighborhood of $A$. We also study an analogous statement for locally Stein open subsets of line bundles over $\mathbb{P}^{n}$.
Publié le : 2010-12-15
Classification:  32E41,  32E10
@article{1292854312,
     author = {Col\c toiu, Mihnea and Joi\c ta, Cezar},
     title = {The Levi problem in the blow-up},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 943-947},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1292854312}
}
Colţoiu, Mihnea; Joiţa, Cezar. The Levi problem in the blow-up. Osaka J. Math., Tome 47 (2010) no. 1, pp.  943-947. http://gdmltest.u-ga.fr/item/1292854312/