On maximal tamely ramified pro-2-extensions over the cyclotomic $\mathbb{Z}_{2}$-extension of an imaginary quadratic field
Salle, Landry
Osaka J. Math., Tome 47 (2010) no. 1, p. 921-942 / Harvested from Project Euclid
In [7], Yasushi Mizusawa gives computations which lead to a pro-$2$-presentation of the Galois group of the maximal unramified pro-$2$-extension of the cyclotomic $\mathbb{Z}_{2}$-extension over some imaginary quadratic fields, with low $\lambda$-invariants. We show that these methods can be applied to some maximal tamely ramified pro-$2$-extensions, depending on the quadratic imaginary field, and the condition of ramification.
Publié le : 2010-12-15
Classification:  11R23,  11R18
@article{1292854311,
     author = {Salle, Landry},
     title = {On maximal tamely ramified pro-2-extensions over the cyclotomic $\mathbb{Z}\_{2}$-extension of an imaginary quadratic field},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 921-942},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1292854311}
}
Salle, Landry. On maximal tamely ramified pro-2-extensions over the cyclotomic $\mathbb{Z}_{2}$-extension of an imaginary quadratic field. Osaka J. Math., Tome 47 (2010) no. 1, pp.  921-942. http://gdmltest.u-ga.fr/item/1292854311/