Ricci flow on quasi-projective manifolds
Lott, John ; Zhang, Zhou
Duke Math. J., Tome 156 (2011) no. 1, p. 87-123 / Harvested from Project Euclid
We consider the Kähler-Ricci flow on complete finite-volume metrics that live on the complement of a divisor in a compact Kähler manifold $\overline{X}$ . Assuming certain spatial asymptotics on the initial metric, we compute the singularity time in terms of cohomological data on $\overline{X}$ . We also give a sufficient condition for the singularity, if there is one, to be type II.
Publié le : 2011-01-15
Classification:  53C44,  32Q15
@article{1292509119,
     author = {Lott, John and Zhang, Zhou},
     title = {Ricci flow on quasi-projective manifolds},
     journal = {Duke Math. J.},
     volume = {156},
     number = {1},
     year = {2011},
     pages = { 87-123},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1292509119}
}
Lott, John; Zhang, Zhou. Ricci flow on quasi-projective manifolds. Duke Math. J., Tome 156 (2011) no. 1, pp.  87-123. http://gdmltest.u-ga.fr/item/1292509119/