We show that for any pair $\phi$ and $\psi$ of contradictory formulas of
dependence logic there is a formula $\theta$ of the same logic such that
$\phi\equiv\theta$ and $\psi\equiv\neg\theta$. This generalizes a result of
Burgess.
@article{1292249610,
author = {Kontinen, Juha and V\"a\"an\"anen, Jouko},
title = {A Remark on Negation in Dependence Logic},
journal = {Notre Dame J. Formal Logic},
volume = {52},
number = {1},
year = {2011},
pages = { 55-65},
language = {en},
url = {http://dml.mathdoc.fr/item/1292249610}
}
Kontinen, Juha; Väänänen, Jouko. A Remark on Negation in Dependence Logic. Notre Dame J. Formal Logic, Tome 52 (2011) no. 1, pp. 55-65. http://gdmltest.u-ga.fr/item/1292249610/