On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$
Naci Cangül, İsmail ; Demirci, Musa ; Soydan, Gökhan ; Tzanakis, Nikos
Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, p. 209-225 / Harvested from Project Euclid
We give the complete solution $(n,a,b,x,y)$ of the title equation when $\gcd(x,y)=1$, except for the case when $xab$ is odd. Our main result is Theorem 1.
Publié le : 2010-12-15
Classification:  Exponential Diophantine equation,  $S$-Integral points of an elliptic curve,  Thue-Mahler equation,  Lucas sequence,  Linear form in logarithms of algebraic numbers,  11D61,  11D25,  11D41,  11D59,  11J86
@article{1291903397,
     author = {Naci Cang\"ul, \.Ismail and Demirci, Musa and Soydan, G\"okhan and Tzanakis, Nikos},
     title = {On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$},
     journal = {Funct. Approx. Comment. Math.},
     volume = {42},
     number = {1},
     year = {2010},
     pages = { 209-225},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1291903397}
}
Naci Cangül, İsmail; Demirci, Musa; Soydan, Gökhan; Tzanakis, Nikos. On the diophantine equation $x^{2}+5^{a}\cdot 11^{b}=y^{n}$. Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, pp.  209-225. http://gdmltest.u-ga.fr/item/1291903397/