Hausdorff dimension of the recurrence sets of Gauss transformation on the field of Laurent series
Zhang, Lan ; Wang, Sikui
Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, p. 161-170 / Harvested from Project Euclid
Define the recurrence set of Gauss transformation $T$ on the field of Laurent series as following $$E(x_0)=\{x\in I: T^n(x)\in I_{t_n}(x_0) for infinitely many $n$\},$$ where $I_{t_n}(x_0)$ denotes $t_n$-th order cylinder of $x_0$. In this paper, the Hausdorff dimension of the set $E(x_0)$ is determined.
Publié le : 2010-12-15
Classification:  continued fraction,  recurrence set,  formal Laurent series,  Hausdorff dimension,  11K55,  28A80,  58F03
@article{1291903395,
     author = {Zhang, Lan and Wang, Sikui},
     title = {Hausdorff dimension of the recurrence sets of Gauss transformation on the field of Laurent series},
     journal = {Funct. Approx. Comment. Math.},
     volume = {42},
     number = {1},
     year = {2010},
     pages = { 161-170},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1291903395}
}
Zhang, Lan; Wang, Sikui. Hausdorff dimension of the recurrence sets of Gauss transformation on the field of Laurent series. Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, pp.  161-170. http://gdmltest.u-ga.fr/item/1291903395/