Nonparametric estimate of spectral density functions of sample covariance matrices: A first step
Jing, Bing-Yi ; Pan, Guangming ; Shao, Qi-Man ; Zhou, Wang
Ann. Statist., Tome 38 (2010) no. 1, p. 3724-3750 / Harvested from Project Euclid
The density function of the limiting spectral distribution of general sample covariance matrices is usually unknown. We propose to use kernel estimators which are proved to be consistent. A simulation study is also conducted to show the performance of the estimators.
Publié le : 2010-12-15
Classification:  Sample covariance matrices,  Stieltjes transform,  nonparametric estimate,  15A52,  60F15,  62E20,  60F17
@article{1291126971,
     author = {Jing, Bing-Yi and Pan, Guangming and Shao, Qi-Man and Zhou, Wang},
     title = {Nonparametric estimate of spectral density functions of sample covariance matrices: A first step},
     journal = {Ann. Statist.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 3724-3750},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1291126971}
}
Jing, Bing-Yi; Pan, Guangming; Shao, Qi-Man; Zhou, Wang. Nonparametric estimate of spectral density functions of sample covariance matrices: A first step. Ann. Statist., Tome 38 (2010) no. 1, pp.  3724-3750. http://gdmltest.u-ga.fr/item/1291126971/