Hausdorff and packing dimensions of the images of random fields
Shieh, Narn-Rueih ; Xiao, Yimin
Bernoulli, Tome 16 (2010) no. 1, p. 926-952 / Harvested from Project Euclid
Let X = {X(t), t ∈ ℝN} be a random field with values in ℝd. For any finite Borel measure μ and analytic set E ⊂ ℝN, the Hausdorff and packing dimensions of the image measure μX and image set X(E) are determined under certain mild conditions. These results are applicable to Gaussian random fields, self-similar stable random fields with stationary increments, real harmonizable fractional Lévy fields and the Rosenblatt process.
Publié le : 2010-11-15
Classification:  Hausdorff dimension,  images,  packing dimension,  packing dimension profiles,  real harmonizable fractional Lévy motion,  Rosenblatt process,  self-similar stable random fields
@article{1290092890,
     author = {Shieh, Narn-Rueih and Xiao, Yimin},
     title = {Hausdorff and packing dimensions of the images of random fields},
     journal = {Bernoulli},
     volume = {16},
     number = {1},
     year = {2010},
     pages = { 926-952},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1290092890}
}
Shieh, Narn-Rueih; Xiao, Yimin. Hausdorff and packing dimensions of the images of random fields. Bernoulli, Tome 16 (2010) no. 1, pp.  926-952. http://gdmltest.u-ga.fr/item/1290092890/