Connectivity bounds for the vacant set of random interlacements
Sidoravicius, Vladas ; Sznitman, Alain-Sol
Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, p. 976-990 / Harvested from Project Euclid
The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u, with u the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math. 62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u>u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab. 37 (2009) 1715–1746]. It is presently an open problem whether u∗∗ actually coincides with u.
Publié le : 2010-11-15
Classification:  Connectivity function,  Random interlacements,  Percolation,  60K35,  60G50,  82C41
@article{1288878333,
     author = {Sidoravicius, Vladas and Sznitman, Alain-Sol},
     title = {Connectivity bounds for the vacant set of random interlacements},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {46},
     number = {1},
     year = {2010},
     pages = { 976-990},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1288878333}
}
Sidoravicius, Vladas; Sznitman, Alain-Sol. Connectivity bounds for the vacant set of random interlacements. Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, pp.  976-990. http://gdmltest.u-ga.fr/item/1288878333/