The unique ergodicity of equicontinuous laminations
MATSUMOTO, Shigenori
Hokkaido Math. J., Tome 39 (2010) no. 3, p. 389-403 / Harvested from Project Euclid
We prove that a transversely equicontinuous minimal lamination on a locally compact metric space $Z$ has a transversely invariant nontrivial Radon measure. Moreover if the space $Z$ is compact, then the tranversely invariant Radon measure is shown to be unique up to a scaling.
Publié le : 2010-10-15
Classification:  lamination,  foliation,  transversely invariant measure,  unique ergodicity,  53C12,  37C85
@article{1288357974,
     author = {MATSUMOTO, Shigenori},
     title = {The unique ergodicity of equicontinuous laminations},
     journal = {Hokkaido Math. J.},
     volume = {39},
     number = {3},
     year = {2010},
     pages = { 389-403},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1288357974}
}
MATSUMOTO, Shigenori. The unique ergodicity of equicontinuous laminations. Hokkaido Math. J., Tome 39 (2010) no. 3, pp.  389-403. http://gdmltest.u-ga.fr/item/1288357974/