First we give the new elementary proof of the structure equations of $G_2$ and the congruence theorem of hypersurfaces of the purely imaginary octonions $\ImO$ under the action of $G_2$. Next, we classify almost complex structures of homogeneous hypersurfaces of $\ImO$ into 4-types.
Publié le : 2010-10-15
Classification:
octonions,
almost complex structure,
$G_2$-congruent,
$G_2$-orbits decomposition,
53C30,
53C15
@article{1288357973,
author = {HASHIMOT, Hideya and OHASHI, Misa},
title = {Orthogonal almost complex structures of hypersurfaces of purely imaginary octonions},
journal = {Hokkaido Math. J.},
volume = {39},
number = {3},
year = {2010},
pages = { 351-387},
language = {en},
url = {http://dml.mathdoc.fr/item/1288357973}
}
HASHIMOT, Hideya; OHASHI, Misa. Orthogonal almost complex structures of hypersurfaces of purely imaginary octonions. Hokkaido Math. J., Tome 39 (2010) no. 3, pp. 351-387. http://gdmltest.u-ga.fr/item/1288357973/