Spectral distributions of adjacency and Laplacian matrices of random graphs
Ding, Xue ; Jiang, Tiefeng
Ann. Appl. Probab., Tome 20 (2010) no. 1, p. 2086-2117 / Harvested from Project Euclid
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: ¶ (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; ¶ (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval almost surely; ¶ (iii) the empirical distributions of the eigenvalues of the Laplacian matrices converge weakly to the free convolution of the standard Gaussian distribution and the Wigner’s semi-circular law; ¶ (iv) the empirical distributions of the eigenvalues of the adjacency matrices converge weakly to the Wigner’s semi-circular law.
Publié le : 2010-12-15
Classification:  Random graph,  random matrix,  adjacency matrix,  Laplacian matrix,  largest eigenvalue,  spectral distribution,  semi-circle law,  free convolution,  05C80,  05C50,  15A52,  60B10
@article{1287494555,
     author = {Ding, Xue and Jiang, Tiefeng},
     title = {Spectral distributions of adjacency and Laplacian matrices of random graphs},
     journal = {Ann. Appl. Probab.},
     volume = {20},
     number = {1},
     year = {2010},
     pages = { 2086-2117},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1287494555}
}
Ding, Xue; Jiang, Tiefeng. Spectral distributions of adjacency and Laplacian matrices of random graphs. Ann. Appl. Probab., Tome 20 (2010) no. 1, pp.  2086-2117. http://gdmltest.u-ga.fr/item/1287494555/