Convergence of polynomial ergodic averages of several variables for some commuting transformations
Johnson, Michael C. R.
Illinois J. Math., Tome 53 (2009) no. 1, p. 865-882 / Harvested from Project Euclid
Let $(X,\mathcal{B},\mu)$ be a probability space and let T1, …, Tl be l commuting invertible measure preserving transformations of X. We show that if T1c1…Tlcl is ergodic for each (c1, …, cl)≠(0, …, 0), then the averages $\frac{1}{|\Phi_{N}|}\sum_{u\in\Phi_{N}}\prod _{i=1}^{r}T_{1}^{p_{i1}(u)}\ldots T_{l}^{p_{il}(u)}f_{i}$ converge in L2(μ) for all polynomials pij : ℤd→ℤ, all fi∈L(μ), and all Følner sequences {ΦN}N=1 in ℤd.
Publié le : 2009-05-15
Classification:  28D05,  37A15
@article{1286212920,
     author = {Johnson, Michael C. R.},
     title = {Convergence of polynomial ergodic averages of several variables for some commuting transformations},
     journal = {Illinois J. Math.},
     volume = {53},
     number = {1},
     year = {2009},
     pages = { 865-882},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1286212920}
}
Johnson, Michael C. R. Convergence of polynomial ergodic averages of several variables for some commuting transformations. Illinois J. Math., Tome 53 (2009) no. 1, pp.  865-882. http://gdmltest.u-ga.fr/item/1286212920/