Idempotent subquotients of symmetric quasi-hereditary algebras
Mazorchuk, Volodymyr ; Miemietz, Vanessa
Illinois J. Math., Tome 53 (2009) no. 1, p. 737-756 / Harvested from Project Euclid
We show how any finite-dimensional algebra can be realized as an idempotent subquotient of some symmetric quasi-hereditary algebra. In the special case of rigid symmetric algebras, we show that they can be realized as centralizer subalgebras of symmetric quasi-hereditary algebras. We also show that the infinite-dimensional symmetric quasi-hereditary algebras we construct admit quasi-hereditary structures with respect to two opposite orders, that they have strong exact Borel and Δ-subalgebras and the corresponding triangular decompositions.
Publié le : 2009-05-15
Classification:  16G10,  16D90,  16W10
@article{1286212913,
     author = {Mazorchuk, Volodymyr and Miemietz, Vanessa},
     title = {Idempotent subquotients of symmetric quasi-hereditary algebras},
     journal = {Illinois J. Math.},
     volume = {53},
     number = {1},
     year = {2009},
     pages = { 737-756},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1286212913}
}
Mazorchuk, Volodymyr; Miemietz, Vanessa. Idempotent subquotients of symmetric quasi-hereditary algebras. Illinois J. Math., Tome 53 (2009) no. 1, pp.  737-756. http://gdmltest.u-ga.fr/item/1286212913/