Feit and Thompson conjectured for distinct primes $p < q$ that $(q^{p}-1)/(q-1)$ never divides $(p^{q}-1)/(p-1)$. This paper is a record on partial solutions to this conjecture for small primes 3 and 5.
Publié le : 2010-08-15
Classification:
Odd order theorem,
power residue symbol,
Eisenstein reciprocity,
11A07,
20D05
@article{1286198321,
author = {Motose, Kaoru},
title = {Notes to the Feit-Thompson conjecture. II},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {86},
number = {1},
year = {2010},
pages = { 131-132},
language = {en},
url = {http://dml.mathdoc.fr/item/1286198321}
}
Motose, Kaoru. Notes to the Feit-Thompson conjecture. II. Proc. Japan Acad. Ser. A Math. Sci., Tome 86 (2010) no. 1, pp. 131-132. http://gdmltest.u-ga.fr/item/1286198321/