Rigidity of the canonical isometric imbedding of the symplectic group $Sp(n)$
AGAOKA, Yoshio ; KANEDA, Eiji
Hokkaido Math. J., Tome 36 (2007) no. 4, p. 79-110 / Harvested from Project Euclid
In this paper, we discuss the rigidity of $Sp(n)$ as a Riemannian submanifold of $M(n,n;\mathbb{H})$. We prove that the inclusion map $\pmb{f}_0$, which is called the canonical isometric imbedding of $Sp(n)$, is rigid in the following strongest sense: Any isometric immersion $\pmb{f}_1$ of a connected open set $U (\subset Sp(n))$ into $\pmb{R}^{4n^2}\,(\cong M(n,n;\mathbb{H}))$ coincides with $\pmb{f}_0$ up to a euclidean transformation of $\pmb{R}^{4n^2}$, i.e., there is a euclidean transformation $a$ of $\pmb{R}^{4n^2}$ satisfying $\pmb{f}_1=a\pmb{f}_0$ on $U$.
Publié le : 2007-02-15
Classification:  curvature invariant,  isometric imbedding,  rigidity,  symplectic group,  53C35,  20G20,  53B25,  17B20
@article{1285766664,
     author = {AGAOKA, Yoshio and KANEDA, Eiji},
     title = {Rigidity of the canonical isometric imbedding of the symplectic group $Sp(n)$},
     journal = {Hokkaido Math. J.},
     volume = {36},
     number = {4},
     year = {2007},
     pages = { 79-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766664}
}
AGAOKA, Yoshio; KANEDA, Eiji. Rigidity of the canonical isometric imbedding of the symplectic group $Sp(n)$. Hokkaido Math. J., Tome 36 (2007) no. 4, pp.  79-110. http://gdmltest.u-ga.fr/item/1285766664/