Automorphisms of $\Sigma_{n+1}-$invariant trilinear forms
S{\L}ADEK, Andrzej ; WO{\L}OWIEC-MUSIA{\L}, Ma{\l}gorzata
Hokkaido Math. J., Tome 36 (2007) no. 4, p. 73-77 / Harvested from Project Euclid
Examination of automorphism groups of forms is undertaken by many authors. Sometimes the description of such groups is a difficult task. It turns out that a representation of a form as a sum of powers of linear forms may be very helpful, especially when this representation is unique. We show this in the case of $\Sigma_{n+1}-$invariant symmetric trilinear form $\Theta_n$ considered by Egawa and Suzuki.
Publié le : 2007-02-15
Classification:  symmetric trilinear form,  automorphism group,  unique representation,  sum of powers of linear forms,  11E76
@article{1285766663,
     author = {S{\L}ADEK, Andrzej and WO{\L}OWIEC-MUSIA{\L}, Ma{\l}gorzata},
     title = {Automorphisms of $\Sigma\_{n+1}-$invariant trilinear forms},
     journal = {Hokkaido Math. J.},
     volume = {36},
     number = {4},
     year = {2007},
     pages = { 73-77},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766663}
}
S{\L}ADEK, Andrzej; WO{\L}OWIEC-MUSIA{\L}, Ma{\l}gorzata. Automorphisms of $\Sigma_{n+1}-$invariant trilinear forms. Hokkaido Math. J., Tome 36 (2007) no. 4, pp.  73-77. http://gdmltest.u-ga.fr/item/1285766663/