On the universal Burnside module
FUJITA, Ryousuke
Hokkaido Math. J., Tome 36 (2007) no. 4, p. 121-127 / Harvested from Project Euclid
Let $G$ is a group. In the case where $G$ is finite, Oliver-Petrie defined a Burnside module $\Omega(G, {\cal F})$ consisting of all equivalent classes of $\cal F$-complex. The purpose of this paper is to define the universal Burnside module $U(G, {\cal F})$. If $G$ is finite, we have $U(G, {\cal F}) \cong \Omega(G, {\cal F})$.
Publié le : 2007-02-15
Classification:  $G$-$CW$-complex,  $\cal F$-complex,  Universal Burnside module.,  57S15,  57S25
@article{1285766654,
     author = {FUJITA, Ryousuke},
     title = {On the universal Burnside module},
     journal = {Hokkaido Math. J.},
     volume = {36},
     number = {4},
     year = {2007},
     pages = { 121-127},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766654}
}
FUJITA, Ryousuke. On the universal Burnside module. Hokkaido Math. J., Tome 36 (2007) no. 4, pp.  121-127. http://gdmltest.u-ga.fr/item/1285766654/