On the Lefschetz module
FUJITA, Ryousuke
Hokkaido Math. J., Tome 36 (2007) no. 4, p. 111-120 / Harvested from Project Euclid
Let $G$ be a finite group. We define a Lefschets module $L(G, \Pi)$ which consists of equivalent classes of all $\Pi$-maps and prove that it is isomorphic to the Burnside module $\Omega(G, \Pi)$.
Publié le : 2007-02-15
Classification:  $G$-complex,  $G$-map,  $G$-poset,  Lefschets module.,  57S17,  57S25
@article{1285766653,
     author = {FUJITA, Ryousuke},
     title = {On the Lefschetz module},
     journal = {Hokkaido Math. J.},
     volume = {36},
     number = {4},
     year = {2007},
     pages = { 111-120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766653}
}
FUJITA, Ryousuke. On the Lefschetz module. Hokkaido Math. J., Tome 36 (2007) no. 4, pp.  111-120. http://gdmltest.u-ga.fr/item/1285766653/