We discuss local normal forms of Pfaffian systems and obtain a necessary and sufficient condition, in terms of relative polarizations, for the local generators of a Pfaffian system to convert to the contact system on the jet manifold $J^r(\R^h,\R^q)$, or to the Pfaffian system associated to a system of partial differential equations. This result
generalizes the Darboux theorem on a Pfaffian equation of constant class.
Publié le : 2006-11-15
Classification:
Pfaffian system,
contact system,
relative polarization,
local normal form,
70H07,
58A20,
37J40,
58A17,
37J55
@article{1285766431,
author = {HONDA, Tomomi},
title = {On the normal forms for Pfaffian systems},
journal = {Hokkaido Math. J.},
volume = {35},
number = {1},
year = {2006},
pages = { 815-845},
language = {en},
url = {http://dml.mathdoc.fr/item/1285766431}
}
HONDA, Tomomi. On the normal forms for Pfaffian systems. Hokkaido Math. J., Tome 35 (2006) no. 1, pp. 815-845. http://gdmltest.u-ga.fr/item/1285766431/