Global solutions of the wave-Schr\"odinger system below $L^{2}$
AKAHORI, Takafumi
Hokkaido Math. J., Tome 35 (2006) no. 1, p. 779-813 / Harvested from Project Euclid
We prove that the 3 dimensional wave-Schr\"odinger system is globally well-posed for data in $(H^{s_{1}}\times \dot{H}^{s_{2}} \times \dot{H}^{s_{2}-1})(\R^{3})$, where both $s_{1}$ and $s_{2}$ are some negative indices.
Publié le : 2006-11-15
Classification:  global well-posedness,  wave-Schr\"odinger system,  35Q55
@article{1285766430,
     author = {AKAHORI, Takafumi},
     title = {Global solutions of the wave-Schr\"odinger system below $L^{2}$},
     journal = {Hokkaido Math. J.},
     volume = {35},
     number = {1},
     year = {2006},
     pages = { 779-813},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766430}
}
AKAHORI, Takafumi. Global solutions of the wave-Schr\"odinger system below $L^{2}$. Hokkaido Math. J., Tome 35 (2006) no. 1, pp.  779-813. http://gdmltest.u-ga.fr/item/1285766430/