Distributors on a tensor category
TAMBARA, D.
Hokkaido Math. J., Tome 35 (2006) no. 1, p. 379-425 / Harvested from Project Euclid
Let $\cA$ be a tensor category and let $\cV$ denote the category of vector spaces. A distributor on $\cA$ is a functor $\cA^{\op}\times \cA\to \cV$. We are concerned with distributors with two-sided $\cA$-action. Those distributors form a tensor category, which we denoted by ${}_{\cA}\bD(\cA,\cA)_{\cA}$. The functor category $\Hom(\cA^{\op},\cV)$ is also a tensor category and has the center $\bZ(\Hom(\cA^{\op},\cV))$. We show that if $\cA$ is rigid, then ${}_{\cA}\bD(\cA,\cA)_{\cA}$ and $\bZ(\Hom(\cA^{\op},\cV))$ are equivalent as tensor categories.
Publié le : 2006-05-15
Classification:  tensor category,  distributor,  center,  18D10
@article{1285766362,
     author = {TAMBARA, D.},
     title = {Distributors on a tensor category},
     journal = {Hokkaido Math. J.},
     volume = {35},
     number = {1},
     year = {2006},
     pages = { 379-425},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766362}
}
TAMBARA, D. Distributors on a tensor category. Hokkaido Math. J., Tome 35 (2006) no. 1, pp.  379-425. http://gdmltest.u-ga.fr/item/1285766362/