Spectral gaps of the one-dimensional Schr\"odinger operators with periodic point interactions
YOSHITOMI, Kazushi
Hokkaido Math. J., Tome 35 (2006) no. 1, p. 365-378 / Harvested from Project Euclid
We study the spectral gaps of the Schr{\"o}dinger operators $$H_{1}=-\frac{d^{2}}{dx^{2}}+\sum^{\infty}_{l=-\infty}( \beta_{1}\delta^{\prime}(x-\kappa-2\pi l)+\beta_{2}\delta^{\prime}(x-2\pi l))\quad {\rm in}\quad L^{2}({\mathbb R}),$$ $$H_{2}=-\frac{d^{2}}{dx^{2}}+\sum^{\infty}_{l=-\infty}( \beta_{1}\delta(x-\kappa-2\pi l)+\beta_{2}\delta(x-2\pi l))\quad {\rm in}\quad L^{2}({\mathbb R}),$$ where $\kappa\in (0,2\pi)$ and $\beta_{1},\beta_{2}\in{\mathbb R}\backslash\{0\}$ are parameters. Given $j\in{\mathbb N}$, we determine whether the $j$th gap of $H_{k}$ is absent or not for $k=1,2$.
Publié le : 2006-05-15
Classification:  Schr\"odinger operators,  periodic point interactions,  spectral gaps,  34B37,  34D08,  34B30,  34L40
@article{1285766361,
     author = {YOSHITOMI, Kazushi},
     title = {Spectral gaps of the one-dimensional Schr\"odinger operators with periodic point interactions},
     journal = {Hokkaido Math. J.},
     volume = {35},
     number = {1},
     year = {2006},
     pages = { 365-378},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766361}
}
YOSHITOMI, Kazushi. Spectral gaps of the one-dimensional Schr\"odinger operators with periodic point interactions. Hokkaido Math. J., Tome 35 (2006) no. 1, pp.  365-378. http://gdmltest.u-ga.fr/item/1285766361/