On geometric properties of Lagrangian submanifolds in product symplectic spaces
JANECZKO, S ; MIKOSZ, M
Hokkaido Math. J., Tome 35 (2006) no. 1, p. 215-227 / Harvested from Project Euclid
We study the generic properties of symplectic relations. Local models of symplectic relations are described and the corresponding local symplectic invariants are derived. A stratification of the Lagrangian Grassmannian in the product symplectic space $(N\x M,\pi _M^*\w _M-\pi _N^*\w _N)$ is constructed and global homological properties of the strata are investigated.
Publié le : 2006-05-15
Classification:  symplectic relation,  Lagrangian Grassmannian,  Maslov class,  58F05,  70H15,  57R45,  32S20
@article{1285766355,
     author = {JANECZKO, S and MIKOSZ, M},
     title = {On geometric properties of Lagrangian submanifolds in product symplectic spaces},
     journal = {Hokkaido Math. J.},
     volume = {35},
     number = {1},
     year = {2006},
     pages = { 215-227},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766355}
}
JANECZKO, S; MIKOSZ, M. On geometric properties of Lagrangian submanifolds in product symplectic spaces. Hokkaido Math. J., Tome 35 (2006) no. 1, pp.  215-227. http://gdmltest.u-ga.fr/item/1285766355/