Singular and fractional integrals along variable surfaces
FAN, Dashan ; SATO, Shuichi
Hokkaido Math. J., Tome 35 (2006) no. 1, p. 61-85 / Harvested from Project Euclid
We study singular integrals associated with the variable surfaces of revolution. We treat the rough kernel case where the singular integral is defined by an $H^1$ kernel function on the sphere $S^{n-1}$. We prove the $L^p$ boundedness of the singular integral for $11$. We also study the $(L^p,L^r)$ boundedness for fractional integrals associated with surfaces of revolution.
Publié le : 2006-02-15
Classification:  Singular integral,  Hardy space,  Rough kernel,  Fractional integral,  42B20
@article{1285766308,
     author = {FAN, Dashan and SATO, Shuichi},
     title = {Singular and fractional integrals along variable surfaces},
     journal = {Hokkaido Math. J.},
     volume = {35},
     number = {1},
     year = {2006},
     pages = { 61-85},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285766308}
}
FAN, Dashan; SATO, Shuichi. Singular and fractional integrals along variable surfaces. Hokkaido Math. J., Tome 35 (2006) no. 1, pp.  61-85. http://gdmltest.u-ga.fr/item/1285766308/