Metalogic of Intuitionistic Propositional Calculus
Citkin, Alex
Notre Dame J. Formal Logic, Tome 51 (2010) no. 1, p. 485-502 / Harvested from Project Euclid
With each superintuitionistic propositional logic L with a disjunction property we associate a set of modal logics the assertoric fragment of which is L. Each formula of these modal logics is interdeducible with a formula representing a set of rules admissible in L. The smallest of these logics contains only formulas representing derivable in L rules while the greatest one contains formulas corresponding to all admissible in L rules. The algebraic semantic for these logics is described.
Publié le : 2010-10-15
Classification:  intuitionistic logic,  modal logic,  admissible rule,  Heyting algebra,  monadic algebra,  intermediate logic,  03B55,  03F45,  06D20
@article{1285765801,
     author = {Citkin, Alex},
     title = {Metalogic of Intuitionistic Propositional Calculus},
     journal = {Notre Dame J. Formal Logic},
     volume = {51},
     number = {1},
     year = {2010},
     pages = { 485-502},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285765801}
}
Citkin, Alex. Metalogic of Intuitionistic Propositional Calculus. Notre Dame J. Formal Logic, Tome 51 (2010) no. 1, pp.  485-502. http://gdmltest.u-ga.fr/item/1285765801/