On the diophantine equation $X^2-(p^{2m}+1)Y^6=-p^{2m}$
He, Bo ; Togbé, Alain ; Yuan, Pingzhi
Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, p. 31-44 / Harvested from Project Euclid
Let $p$ be a prime and $m$ a positive integer. In this paper, it is shown that the equation in the title has at most four solutions in positive integers $(X, Y)$.
Publié le : 2010-09-15
Classification:  algebraic approximations,  Thue's equations,  elliptic curves,  11D41,  11B39
@article{1285679144,
     author = {He, Bo and Togb\'e, Alain and Yuan, Pingzhi},
     title = {On the diophantine equation $X^2-(p^{2m}+1)Y^6=-p^{2m}$},
     journal = {Funct. Approx. Comment. Math.},
     volume = {42},
     number = {1},
     year = {2010},
     pages = { 31-44},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285679144}
}
He, Bo; Togbé, Alain; Yuan, Pingzhi. On the diophantine equation $X^2-(p^{2m}+1)Y^6=-p^{2m}$. Funct. Approx. Comment. Math., Tome 42 (2010) no. 1, pp.  31-44. http://gdmltest.u-ga.fr/item/1285679144/