We establish continuity and Schatten--von Neumann properties for Fourier integral operators with amplitudes in weighted modulation spaces, when acting on modulation spaces themselves. The phase functions are non smooth and admit second order derivatives again in suitable classes of modulation spaces.
@article{1285334474,
author = {Toft, Joachim and Concetti, Francesco and Garello, Gianluca},
title = {Schatten--von Neumann properties for Fourier integral operators with non-smooth symbols II},
journal = {Osaka J. Math.},
volume = {47},
number = {1},
year = {2010},
pages = { 739-786},
language = {en},
url = {http://dml.mathdoc.fr/item/1285334474}
}
Toft, Joachim; Concetti, Francesco; Garello, Gianluca. Schatten--von Neumann properties for Fourier integral operators with non-smooth symbols II. Osaka J. Math., Tome 47 (2010) no. 1, pp. 739-786. http://gdmltest.u-ga.fr/item/1285334474/