A remark on the embedding theorem associated to complex connections of mixed type
Ohsawa, Takeo ; Tarama, Daisuke
Osaka J. Math., Tome 47 (2010) no. 1, p. 731-737 / Harvested from Project Euclid
Let $M$ be a compact complex manifold and let $(L,H)$ be a holomorphic Hermitian line bundle over $M$ such that the curvature form of $h$ is nondegenerate and splits into the difference $\Theta_{+} - \Theta_{-}$ of two semipositive forms $\Theta_{+}$ and $\Theta_{-}$ whose null spaces define mutually transverse holomorphic foliations $\mathcal{F}_{-}$ and $\mathcal{F}_{+}$, respectively. Then $L^{m}$ admits, for sufficiently large $m \in \mathbb{N}$, $C^{\infty}$ sections whose ratio embeds $M$ into $\mathbb{CP}^{N}$ holomorphically (resp. antiholomorphically) along $\mathcal{F}_{+}$ (resp. along $\mathcal{F}_{-}$).
Publié le : 2010-09-15
Classification:  34E40,  32V40,  53C40
@article{1285334473,
     author = {Ohsawa, Takeo and Tarama, Daisuke},
     title = {A remark on the embedding theorem associated to complex connections of mixed type},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 731-737},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285334473}
}
Ohsawa, Takeo; Tarama, Daisuke. A remark on the embedding theorem associated to complex connections of mixed type. Osaka J. Math., Tome 47 (2010) no. 1, pp.  731-737. http://gdmltest.u-ga.fr/item/1285334473/