Construction of an Edwards’ probability measure on $\mathcal{C}(\mathbb{R}_{+},\mathbb{R})$
Najnudel, Joseph
Ann. Probab., Tome 38 (2010) no. 1, p. 2295-2321 / Harvested from Project Euclid
In this article, we prove that the measures ℚT associated to the one-dimensional Edwards’ model on the interval [0, T] converge to a limit measure ℚ when T goes to infinity, in the following sense: for all s≥0 and for all events Λs depending on the canonical process only up to time s, ℚTs) → ℚ(Λs). ¶ Moreover, we prove that, if ℙ is Wiener measure, there exists a martingale (Ds)s∈ℝ+ such that $\mathbb{Q}(\Lambda_{s})=\mathbb{E}_{\mathbb{P}}(\mathbh{1}_{\Lambda_{s}}D_{s})$ , and we give an explicit expression for this martingale.
Publié le : 2010-11-15
Classification:  Edwards’ model,  polymer measure,  Brownian motion,  penalization,  local time,  60F99,  60G30,  60G44,  60H10,  60J65
@article{1285334207,
     author = {Najnudel, Joseph},
     title = {Construction of an Edwards' probability measure on $\mathcal{C}(\mathbb{R}\_{+},\mathbb{R})$},
     journal = {Ann. Probab.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 2295-2321},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285334207}
}
Najnudel, Joseph. Construction of an Edwards’ probability measure on $\mathcal{C}(\mathbb{R}_{+},\mathbb{R})$. Ann. Probab., Tome 38 (2010) no. 1, pp.  2295-2321. http://gdmltest.u-ga.fr/item/1285334207/