The sharp Hardy uncertainty principle for Schrödinger evolutions
Escauriaza, Luis ; Kenig, Carlos E. ; Ponce, Gustavo ; Vega, Luis
Duke Math. J., Tome 151 (2010) no. 1, p. 163-187 / Harvested from Project Euclid
We give a new proof of Hardy uncertainty principle, up to the endpoint case, which is only based on calculus. The method allows us to extend Hardy uncertainty principle to Schrödinger equations with nonconstant coefficients. We also deduce optimal Gaussian decay bounds for solutions to these Schrödinger equations.
Publié le : 2010-10-01
Classification:  35B05,  35B60
@article{1285247221,
     author = {Escauriaza, Luis and Kenig, Carlos E. and Ponce, Gustavo and Vega, Luis},
     title = {The sharp Hardy uncertainty principle for Schr\"odinger evolutions},
     journal = {Duke Math. J.},
     volume = {151},
     number = {1},
     year = {2010},
     pages = { 163-187},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1285247221}
}
Escauriaza, Luis; Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis. The sharp Hardy uncertainty principle for Schrödinger evolutions. Duke Math. J., Tome 151 (2010) no. 1, pp.  163-187. http://gdmltest.u-ga.fr/item/1285247221/