Convolution equations on spaces of quasi-nuclear functions of a given type and order
Fávaro, Vinícius V.
Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, p. 535-569 / Harvested from Project Euclid
In this article we prove existence and approximation results for convolution equations on the spaces of $\left( s;\left( r,q\right) \right) $-quasi-nuclear mappings of a given type and order on a Banach space $E$. As special case this yields results for partial differential equations with constant coefficients for entire functions on finite-dimensional complex Banach spaces. We also prove division theorems for $\left( s;m\left( r,q\right) \right) $-summing functions of a given type and order, that are essential to prove the existence and approximation results.
Publié le : 2010-08-15
Classification:  Banach spaces,  homogeneous polynomials,  convolution equations,  division theorems,  46G20,  46G25
@article{1284570737,
     author = {F\'avaro, Vin\'\i cius V.},
     title = {Convolution equations on spaces of quasi-nuclear functions
of a given type and order},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 535-569},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1284570737}
}
Fávaro, Vinícius V. Convolution equations on spaces of quasi-nuclear functions
of a given type and order. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp.  535-569. http://gdmltest.u-ga.fr/item/1284570737/