On the global solvability of the Cauchy problem for damped Kirchhoff equations
Manfrin, Renato
Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, p. 411-440 / Harvested from Project Euclid
We study the Cauchy problem for the damped Kirchhoff equation in the phase space $\, H^{r}\times H^{r-1}$, with $r\ge{3/ 2}$. We prove global solvability and decay of solutions when the initial data belong to an open, dense subset $B$ of the phase space such that $B+B= H^{r} \times H^{r-1}$.
Publié le : 2010-08-15
Classification:  Damped Kirchhoff equation,  global existence,  decay estimates,  35L70,  35B40,  35L15
@article{1284570730,
     author = {Manfrin, Renato},
     title = {On the global solvability of the Cauchy problem for damped
Kirchhoff equations},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 411-440},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1284570730}
}
Manfrin, Renato. On the global solvability of the Cauchy problem for damped
Kirchhoff equations. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp.  411-440. http://gdmltest.u-ga.fr/item/1284570730/