A remark on the Mahler conjecture: Local minimality of the unit cube
Nazarov, Fedor ; Petrov, Fedor ; Ryabogin, Dmitry ; Zvavitch, Artem
Duke Math. J., Tome 151 (2010) no. 1, p. 419-430 / Harvested from Project Euclid
We prove that the unit cube $B^n_{\infty}$ is a strict local minimizer for the Mahler volume product ${\rm vol}_n(K){\rm vol}_n(K^*)$ in the class of origin-symmetric convex bodies endowed with the Banach-Mazur distance.
Publié le : 2010-09-15
Classification:  52A20,  52A40
@article{1283865309,
     author = {Nazarov, Fedor and Petrov, Fedor and Ryabogin, Dmitry and Zvavitch, Artem},
     title = {A remark on the Mahler conjecture: Local minimality of the unit cube},
     journal = {Duke Math. J.},
     volume = {151},
     number = {1},
     year = {2010},
     pages = { 419-430},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1283865309}
}
Nazarov, Fedor; Petrov, Fedor; Ryabogin, Dmitry; Zvavitch, Artem. A remark on the Mahler conjecture: Local minimality of the unit cube. Duke Math. J., Tome 151 (2010) no. 1, pp.  419-430. http://gdmltest.u-ga.fr/item/1283865309/